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Abstract

In the pharmaceutical industry, the process of measuring a product’s attributes can be very complicated and the
potential for an analytical mistake can be quite high. Often, an unexpected result leads to an investigation to assess
the possibility that a mistake was made in the laboratory. Traditionally, the data generated in these investigations has
been used, along with various outlier tests, to attempt to negate the original data. Sometimes, historical estimates of
the S.D. of the analytical method are not available for use in outlier testing and the power of the outlier tests to detect
true mistakes without such historical estimates is often very low due to the small amount of data available. This leads
to a great deal of inconsistency in the amount of data that is further generated and how the data is ultimately handled
in making a decision. Recently, FDA demands for consistent and objective laboratory investigations have raised
concerns about these practices. An alternative approach, involving a systematic investigation strategy and data
handling via the structured use of the median, is proposed in this paper. The operating characteristics of the
traditional and proposed approaches are compared to show their similarity and the advantages of the proposed
approach. It is strongly believed by the authors that the structured use of the median will lead to more consistent
investigations and data handling, which will benefit industry, the FDA and ultimately, the consumer, by allowing
more accurate decisions to be made more efficiently. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the pharmaceutical industry, the process of
measuring a product’s attributes can be very com-
plicated and time-consuming and there is always
the potential for an analytical mistake. The US
Pharmacopeia (USP) has recognized this and sug-
gests outlier tests for the purpose of identifying

outliers in bioassays and microbiological assays
[1]. However, procedures for investigating
whether an analytical mistake has occurred are
often inconsistent and subjective. For example,
one approach is the practice of generating addi-
tional test results that, if they provide ‘normal-
looking’ results, will allow the use of a statistical
outlier test to eliminate the aberrant result [2–7].
This approach has the potential of being applied
subjectively, with little or no consistency across* Corresponding author.
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time and/or location. In this paper, we propose a
structured use of the median to investigate the
possibility of an analytical mistake and to handle
all of the data generated. We will demonstrate
that this approach is simple, consistent and
objective.

2. Investigational process

How does one determine that an analytical
mistake may have occurred? Consider a situation
such as that illustrated in Fig. 1, showing a plot of
the potency results for product X for the last 31
assay runs. The statistical process control limits
for the product are 97.0–103.0. Excluding the last
result, the process appears to be capable of pro-
ducing potency results well within those limits.

The last result, 93.0, was unusually low. The
question is ‘has an analytical mistake occurred, or
does this sample truly have a potency of 93.0?’ A
consistent, simple and objective procedure is
needed to address this question.

The first step of any investigative procedure is
to check for an assignable cause, an analytical
mistake which would explain the unusual initial
result. Some examples are:
1. Use of an incorrect analytical procedure
2. Failure to calibrate the instrument
3. Use of an out-of-date standard or the wrong

standard
4. Use of an incorrect standard potency
5. A calculation error

If an assignable cause can be verified and docu-
mented, the initial result would be invalidated. If
the calculation can be corrected, as in 4 or 5
above, the result would be recalculated. If the
mistake cannot be corrected, the testing process
must be repeated.

When no assignable cause for the unusual result
can be determined, further investigation is war-
ranted. With our proposed methodology, the next
step is to determine whether it is probable that an
analytical mistake has occurred. The investigative
procedure requires a thorough understanding of
the testing process. As used in this document, the
term test will refer to all steps in obtaining a
sample result. In Fig. 2 below, a test typical of
many HPLC content assays is illustrated. Multi-
ple samples (tablets, capsules or vials) are ran-
domly obtained from the lot and are combined to
form an homogeneous composite. The analytical
part of the test consists of two levels:
1. The preparation level (e.g. weighing, dilution,

etc. of samples and standards)
2. The analysis level (e.g. injection of solutions

on the HPLC, analysis of solutions by Auto-
analyzer, etc.)

In order to determine whether an analytical
mistake is probable and to isolate where it may
have occurred, the investigation begins with the
analysis level and follows with the preparation
level if necessary. A reanalysis is defined as a
reevaluation of the original prepared samples or

Fig. 1. Plot of last 31 Lot results.

Fig. 2. Schematic of the test.
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Fig. 3. Reanalyses schematic.

two results in addition to the original result, as
illustrated in Fig. 3.

In this illustration, the two reanalysis results
appear to contradict the original result. In a situa-
tion such as this, an outlier test — such as
Dixon’s test or the extreme studentized deviate
(ESD) test (see Refs. [4–6] and Appendix A) — is
often applied in an attempt to identify the original
result as an outlier and to set it aside from further
calculations. There are several drawbacks to the
use of outlier tests in this setting. For one, unless
a historical estimate of the relevant S.D. is avail-
able, the power of outlier tests is low for small
sample sizes, which means that obvious blunders
or grossly spurious results will sometimes fail to
be tagged as outliers. These historical S.D. esti-
mates are not always available. In addition, the
choice of outlier test and significance level can
lead to ad hoc and subjective testing procedures.
Further, when the initial outlier test fails to inval-
idate a result, there is the potential of continuing
the analytical and statistical testing processes until
there is sufficient data (adequate power) to reject
the original result. Finally, there is always the
issue of whether a statistical outlier is necessarily
erroneous.

The disadvantages and drawbacks of outlier
testing demonstrate the need for an alternative
that is more objective and consistent. We propose
a procedure that computes the median of all
results. This approach offers several advantages
over outlier testing. First, the calculations are
simpler. The median of a set of ranked values is
the middle one if there are an odd number of
values, and is midway between the middle two if
there are an even number of values. More impor-
tantly, the use of the median provides a consistent
and objective approach, since the need for ad hoc
and/or subjective application of statistical outlier
testing is eliminated because of the superior
ruggedness of the median as a statistic. Finally, all
data are used to compute a result except those
invalidated due to assignable causes.

Returning to the example shown in Fig. 3, the
original result was 93.0 and the two reanalysis
results were 97.5 and 98.8, respectively. Given
these results and the previous product history, one
could infer that the unusually low value of 93.0

sample solutions (e.g. reinjection of standard and
sample solutions on HPLC to investigate the pos-
sibility of an instrumentation mistake or malfunc-
tion). A retest consists of performing the entire
test again (including a new standard curve) on
new preparations from the same homogeneous
composite sample.

The general investigation philosophy can be
quite flexible. However, in specific applications,
some questions and issues need to be resolved
beforehand in order to promote consistency and
objectivity. For example,
1. Should the sample and standard solutions be

reanalyzed? If so, how many reanalyses should
be performed?

2. If the additional results contradict the initial
result, how should the data be combined?

3. Should new standards be prepared and/or
should new sample preparations be prepared
from the original sample(s)? If so, how many
sample preparations should be made?

4. If these results also contradict the original
result, how should the data be combined?

In discussing the recommended approach, we
consider first the steps applicable at the analysis
level. We then turn to a consideration of issues at
the preparation level.

If sample and standard solutions are stable and
still available, a reanalysis may be performed.
Here, one is looking for mistakes such as a defec-
tive injection. We propose that the sample and
standard solutions be reanalyzed twice to provide
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was caused by an unidentifiable analytical mis-
take. The real problem is not that the mistake
occurred but, rather, what to do about it in order
to come to a logical and rational decision on the
analytical result. Unless an historical estimate of
the S.D. is available and utilized, the unusual
result is not identified as an outlier by the extreme
studentized deviate test at the 5% level of signifi-
cance. Since nothing was invalidated or elimi-
nated by outlier testing, a combined result would
normally be obtained by averaging the three re-
sults, giving 96.4 which falls below the limit of
97.0. This illustrates a dilemma often encountered
with outlier testing: either to assign a result influ-
enced by a likely analytical mistake; or to perform
additional testing to attempt to overcome the
suspected analytical mistake. In contrast, the me-
dian result would be 97.5, which is above the limit
and provides a result which is more representative
of the likely true sample potency based on past
product history. By using the median, the need to
perform further testing on this sample has been
eliminated.

Now, imagine a scenario where it is not possi-
ble to perform a reanalysis, or where no apparent
discrepancies are found by reanalysis. One should
then test for the possibility of mistakes in, say,
weighing or dilution at the preparation level by
performing a retest. A retest involves independent
standard preparations and new sample prepara-
tions from the original sample. The original sam-
ple material is often, but not always, a composite.
We propose that two independent retests be per-

formed. Fig. 4 depicts an example where a reanal-
ysis was conducted and provided no evidence that
an analysis error had occurred. In this case, the
two reanalysis results were 93.2 and 93.6, which
confirm that the original value of 93.0 was not the
result of a problem with analysis of the original
prepared solutions. Suppose, now, that the two
retest results were 97.5 and 98.8. This indicates a
likelihood of some unnoticed mistake such as a
weighing or dilution of the original sample or
standard.

Again, the real problem is not that the error
occurred but, rather, what to do about it. We now
have five data items to utilize, but these should
not all be weighted equally because of the way
they were generated. A simple and straightfor-
ward way to achieve a reasonable weighting is to
calculate a single result from the three data points
from the first sample preparation and then to
combine this result with the two values obtained
from two independent retests of additional prepa-
rations. This stepwise use of the median is the
‘structure’ referred to in the name of the
methodology.

Consider how an outlier procedure would oper-
ate and where it would lead us in this situation.
Since all three results from the initial sample
preparation were consistent with each other, no
outlier test would be performed at that point. The
average for those three results is 93.3, compared
to the two other results of 97.5 and 98.8. Again
assuming no historical estimate of the S.D. is
available, the extreme studentized deviate test us-
ing the sample S.D. estimate does not identify
93.3 as an outlier at the 5% level of significance.
The arithmetic average of all three results is 96.5
and, once again, we are left with the prospect of
generating additional results in order to overcome
what, in all probability, was a simple mistake in
weighing or dilution.

On the other hand, the proposed median proce-
dure would give 93.2 as the combined result (me-
dian) from the initial sample preparation and
would then yield 97.5 as the combined result
(median) from the three values 93.2, 97.5 and
98.8. With the median procedure, no further test-
ing is required to assign a result to the sample.Fig. 4. Retest with reanalysis schematic.
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3. General performance of the median and outlier
procedures

The examples given in the preceding section
illustrate only a few of the many possible situa-
tions and outcomes when using the different pro-
cedures. In particular, the examples illustrated
cases where the use of the median appeared to
give a result more representative of the true sam-
ple potency than the result obtained through use
of the outlier tests. Other examples could be con-
structed where this would not occur or not be as
evident. In order to compare the performance of
the outlier approach versus the median approach
over a wider range of possible scenarios, a simula-
tion study was carried out as described in detail in
Appendix B.

A simulation study, also called a Monte Carlo
experiment, is a way to characterize the behavior
of a method or technique by performing multiple
repetitions using a computer to generate the re-
sults. Simulation is often used when it is difficult
to obtain closed-form mathematical expressions.

For the present case, we simulate a two-stage
procedure that calls for additional retest or re-
analysis results whenever an initial result falls
below some predetermined limit. This setup is a
simplified version of the actual situation, but it
retains most of the essential elements and permits
a straightforward comparison. Factors that may
affect performance include: the number of addi-
tional results to be generated, the magnitude of an
analytical mistake relative to the true sample re-
sult, the likelihood of such an analytical mistake
and the location of the true sample result relative
to the limit. This simulation study varied these
parameters in a controlled pattern according to a
set protocol.

Three potential procedures for handling results
were studied:
1. Report the median of all the results.
2. Report the arithmetic average after removing

outliers via the ESD outlier test using only the
current sample results to estimate the S.D.

3. Report the arithmetic average after removing
outliers via the ESD outlier test using a histor-
ical estimate of the S.D.

The first issue examined was a comparison of
the procedures with respect to how often they
produced passing results after an initial result fell
below the limit. In order to pass
1. all of the additional results generated must be

greater than the limit and
2. the final computed result must be greater than

the limit.
In this situation, a good procedure is one that

gives a high proportion of passing results when
the true sample value is above the limit and a low
proportion of passing results when the true sam-
ple value is below the limit. The second criterion
of interest was how close the reported values were
to the true value for each sample. The best proce-
dure in this case would have the smallest root
mean square error, which is the square root of the
sum of the squared bias plus variance. The third
and final issue was the likelihood of getting a
passing result with the two-stage procedures, as
compared with a single-stage procedure that used
only the single initial result. Again, a desirable
procedure would be one with more passing results
for samples above the limit, but not for samples
below the limit.

The simulation found that no one procedure is
best over all factors or in all respects, but the
following trends were observed:

The probability of producing a passing result
after an initial result fell below the limit was
similar for all the procedures.
The root mean square error was similar for all
the procedures, but when the true mean was
2-s above the limit, the median was a better
estimator than the ESD outlier test using only
the sample S.D.
The root mean square error from the ESD
outlier test, using an historical S.D., was the
lowest of all of the procedures in all situations,
although the median procedure was very
comparable.
As estimators, the median procedure and the
ESD outlier test using an historical S.D. per-
formed equally well regardless of the size of the
potential analytical mistake, while the ESD out-
lier test using the sample S.D. was affected by
this factor.
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The increased probability of producing a pass-
ing result afforded by a second stage was simi-
lar for all three procedures studied. Thus, given
that reanalysis or retest will be done, use of the
median is neither more nor less likely to pro-
duce passing results than the other forms of
averaging.
Little difference in the probability of passing
was observed as a function of the number of
retests performed. Thus, it is recommended that
two retests are usually sufficient to assess
whether the test sample passes the limit.

The interested reader may wish to examine
Appendix B to obtain more detail regarding the
basis for these conclusions.

4. Conclusions and recommendations

In this paper, we have outlined a procedure for
investigating for evidence of probable analytical
error based on the structured use of the median
and we have compared the performance of the
median to outlier testing in a simplified simulation
study.

The paper has presented the case for using the
median as an alternative to traditional outlier
testing. The median provides a consistent ap-
proach that is both simple and objective and it
provides a methodology that can be followed
easily by all individuals in an organization. Since
the use of the median does not involve a statistical
test for outliers and does not require that aberrant
data be disregarded, it overcomes some of the
deficiencies inherent in outlier testing.

The statistical properties of the median are also
favorable. The simulation study demonstrated
that the performance of the median was not
strongly affected by changes in several of the
important parameters studied and that the perfor-
mance of the median was comparable or even
superior to the outlier procedures.

The performance of the outlier test procedures
is highly dependent upon having a prior estimate
of the S.D. to use in the evaluation. When an
historical S.D. estimate is available, the outlier
test performs well. However, when only the sam-

ple S.D. is available, the outlier test does not
perform very well. This could be an issue early in
drug development when there is limited historical
information on the variability of the analytical
method.

Based on the analysis in this report, we recom-
mend that the structured use of the median be
given strong consideration for adoption in appro-
priate analytical laboratory procedures. For situa-
tions where there is a good deal of historical
information available, the ESD outlier test proce-
dure using an historical estimate of the S.D. is
also a viable alternative.
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Appendix A. Extreme studentized deviate outlier
procedures

A.1. Extreme studentized de6iate test (S.D.
calculated from the sample)

The initial result observed below the limit is X1.
Generate additional results X2, X3, . . . , Xn.
Compute the sample average X( and S.D. s. Then
compute T using the following formulas:

T= [X( −X1]/s

X1 is the suspected outlier.
The suspect observation is deemed an outlier if

T exceeds a tabled critical value. For sample sizes
3, 4 or 5, the one-sided a=0.05 critical values are:

4Sample size 53
1.46 1.671.15Critical value
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A.1.1. Example
Consider the sample values 94.0, 99.3 and

100.2. The ESD test for 94.0 being an outlier gives

T= (97.833−94.0)/3.350=1.144

Since T is less than the tabulated value 1.15, the
low value 94.0 is not deemed an outlier by the
ESD procedure.

A.2. Extreme studentized de6iate test (historical
S.D.)

The initial result observed below the limit is X1.
Generate additional results X2, X3, . . . , Xn.
Compute the sample average X( . An estimate of
the historical S.D. sh, is available. Compute T
using the following formulas:

T= [X( −X1]/sh

X1 is the suspected outlier
The suspect observation is deemed an outlier if

T exceeds a tabled critical value.

A.2.1. Example
Consider the sample values 94.0, 99.3 and

100.2. Assume the historical S.D. with 10 dof to
be 1.12. The ESD test for 94.0 being an outlier
gives

T= (97.833−94.0)/1.12=3.42

For sample sizes 3, 4 or 5, the one-sided a=
0.05 critical values for 10 dof are:

5Sample size 3 4
Critical value 2.01 2.462.27

Since T is greater than the tabulated value 2.01,
the low value 94.0 is deemed an outlier by the
ESD procedure using the historical S.D. estimate.

Appendix B. Simulation comparing the
performance of the median and outlier procedures

A.1. Introduction

In order to understand and compare the perfor-
mance of candidate procedures, a simulation

study was conducted. For the interested reader, a
copy of the SAS1 software code used to generate
the results is included in Appendix C.

In setting up the simulation, we note that none
of the procedures comes into play unless an initial
result seems ‘unusual’, (such as falling outside 3s

control limits or falling outside of an action limit).
To simplify, let us assume that there is a one-sided
lower limit of zero. A result ]0 passes, while a
result B0 does not pass. This simulation exam-
ines simple two-stage procedures that operate in
the following manner:
1. A single initial result is obtained.
2. If the initial result is `0, then the test require-

ment is met.
3. If the initial result is B0, then two or more

additional results are obtained.
4. Perform appropriate procedure to evaluate ad-

ditional results
4.1. ESD outlier procedure using the sample

estimate of the S.D.: extreme studentized
deviate test is performed with the S.D.
calculated from the sample results only.
The test requirement is met if all of the
additional results are `0 and the aver-
age of the results, excluding any detected
outliers, `0.

4.2. ESD outlier procedure with an historical
S.D. estimate with 10 dof : Extreme stu-
dentized deviate test is performed with
the S.D. randomly generated from a true
distribution with S.D. =1 and 10 dof.
The choice of 10 dof was made since the
critical values for the ESD are tabulated
only down to 10 dof in the literature. By
using the fewest degrees of freedom, the
extreme studentized deviate test using the
historical S.D. would have the least dis-
criminatory power. It was expected that
even with as few as 10 dof this approach
would perform very well, and this expec-

1 SAS Institute, Inc., SAS Circle P.O. Box 8686, Cary, N.C.
27512-8000, USA.
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Fig. 5. Plot showing simulation distributions. w, true test
sample mean; k, size of analytical mistake.

The results were generated by drawing them
from one of two simulated unit (s=1) normal
distributions as follows:
1. With probability 100(1−d), the result came

from a true sample distribution with mean w
2. With probability d, it came from an analytical

mistake distribution with mean w-k

Fig. 5 provides a graphical illustration.
The distribution with mean w represents the

population of results that come from the normal
measurement process for a sample, while the dis-
tribution with mean w-k denotes the population
of aberrant or outlying results that arise from an
analytical mistake of magnitude k. The ideal pro-
cedure would always fail a sample for which wB0
and to always pass any sample that has w\0.

The simulation study was conducted over the
following parameter space: d=0.01; n=3, 4 and
5; k=2, 4 and 6; w= −3.0–4.0×0.5.

A.3. Methodology

For each parameter combination above, a mini-
mum of 5686 sets of observations were obtained
as described earlier. At each iteration, an initial
result was randomly generated from the true sam-
ple distribution with probability 1-d or the mis-
take distribution with probability d until an
observation less than the limit was obtained. Once
a result B0 was obtained, then an additional 2, 3
or 4 results were generated each with a probability
1-d of coming from the true sample distribution
and probability d of coming from the analytical
mistake distribution.

For each set of observations, the set of results
was scored as a ‘pass’ or a ‘fail’. For each of the
outlier procedures, the average of the results ex-
cluded any outliers detected by that procedure. If
that average was `0 and all of the additional
results generated were `0, the corresponding
outlier procedure was scored as a ‘pass’ and
scored a ‘fail’ otherwise. For the median proce-
dure, if the median of all the results was `0 and
all of the additional results generated were `0,
the median procedure was scored as a ‘pass’ and
scored a ‘fail’ otherwise.

tation was confirmed in the simulations.
The performance of this test improves as
the degrees of freedom for estimating the
historical S.D. increase. As above, the
test requirement is met if all of the addi-
tional results are greater than or equal to
zero and the average of the results, ex-
cluding any detected outliers, is `0.

4.3. Median procedure : The test is met if the
all of the additional results are `0 and
the median of all the results is `0.

We are interested in comparing how the above
procedures perform in the conditional subset (sec-
ond stage) where the initial result was below the
limit.

A.2. Parameter space

It is known that on each assay there is a chance
of an analytical mistake. For a validated and
in-control assay procedure, the probability (d) of
such a mistake is small. In the simulation, d=
0.01 was used.

This paper recommends that only two addi-
tional results be obtained for reanalysis or retest,
but it is of interest how the procedures compare
when more, say, three or four reanalyses or retests
are done, and the simulation included these cases,
as well. We use n to denote the total number of
results, making n=1 plus the number of reanaly-
ses or retests.
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A.4. Conditional operating characteristics

The first question examined was the following,
‘Are the procedures similar in the proportion of
samples passed?’ For example, does one proce-
dure pass more samples with true means below

the limit (wB0) or pass fewer samples with true
means above the limit (w\0)? To answer these
questions, the procedures were compared on the
basis of the conditional probability of passing the
test, given that the initial result was B0 (condi-
tional operating characteristics).

Fig. 6. Conditional probability of passing for two retests and probability of an analytical mistake=1%. Median, median
investigation procedure; ESD, extreme studentized deviate test using sample S.D.; ESH, extreme studentized deviate test using
historical S.D. with 10 dof; w, true test sample mean; k, size of analytical mistake.

Fig. 7. Conditional probability of passing for four retests and probability of an analytical mistake=1%. Median, median
investigation procedure; ESD, extreme studentized deviate test using sample S.D.; ESH, extreme studentized deviate test using
historical S.D. with 10 dof; w, true test sample mean; k, size of analytical mistake.
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Fig. 8. Root mean square for two retests and probability of an analytical mistake=1%. Median, median investigation procedure;
ESD, extreme studentized deviate test using sample S.D.; ESH, extreme studentized deviate test using historical S.D. with 10 dof;
w, true test sample mean; k, size of analytical mistake.

Plots of the results of the simulation are given
in Figs. 6 and 7 for two and four retests and
where k=2 and k=6. Similar results were ob-
served for other cases.

The following observations were made with
respect to the conditional operating
characteristics:

The probability of passing for all of the proce-
dures was very similar overall.
The median procedure and the ESD outlier
procedure using an historical S.D. are more
likely to pass the test than the ESD outlier
procedure using the sample S.D. when the true
sample mean is 2-s or more above the limit and
when a large analytical mistake is possible (see
Fig. 6 for k=6 and w\2).
Based on these observations, we concluded

that:
1. the operating characteristics of the median

procedure and the ESD outlier procedure us-
ing an historical S.D. were less sensitive to the
size and frequency of analytical mistakes than
the ESD outlier procedure using the sample
S.D.

2. the median produced passing results neither
uniformly more frequently nor uniformly less
frequently than the other procedures.

3. the operating characteristic of the median pro-
cedure and the ESD outlier procedure using a
historical S.D. estimate were very similar even
for large analytical mistakes.

A.5. Estimation properties

The second question of interest is how closely
do the reported results from each procedure esti-
mate the true sample mean w. Since the goal is to
produce accurate and precise results, the perfor-
mance of the procedures can be assessed using the
common statistical criterion of root mean square
error (RMSE), which combines both the accuracy
and variability of an estimator into a one-number
summary:

RMSE= (Bias2+Variance)1/2

The RMSE measures both the mean and variabil-
ity of a computed result, and a smaller RMSE
implies better performance of an estimator. In the
simulation, Bias for any given procedure was
measured by the difference between the mean of
5686 final results and the true mean w, and Vari-
ance was computed as the sample variance of the
5000 final results. Plots of the results of the simu-
lation are included as Figs. 8 and 9 for two and



J.D. Hofer, J.R. Murphy / J. Pharm. Biomed. Anal. 23 (2000) 671–686 681

four retests, where k=2 and k=6. Similar results
were observed for other cases.

With respect to the RMSE comparison, the
following observations were made:

The RMSE from the ESD outlier test using an
historical estimate of the S.D. was the lowest of
all of the procedures in all situations although
the median procedure performed very similarly.
The median was a better estimator than the
ESD outlier test using the sample S.D. when
the true mean was 2-s above the limit (w ] 2).
As estimators, the median procedure and the
ESD outlier test using an historical S.D. esti-
mate performed similarly regardless of the size
of the potential analytical mistake, while the
ESD outlier test using the sample S.D. was
affected by this factor.
From these observations, we concluded that the

median procedure and the ESD outlier procedure
using an historical S.D. perform very similarly.
The median is the preferred estimator due to the
simplicity of implementation and the fact that it
was not sensitive to the size and frequency of
analytical mistakes.

A.6. Comparison of the procedures with a single
stage

One additional aspect of interest with the two-

stage procedures is the probability of a passing
result compared to that from a single-stage proce-
dure using solely the initial result. The probabili-
ties described here are different from those
generated by the simulation, since we are now
dealing with all tests, rather than the subset of
only those tests which had nonconforming initial
results. However, for the two-stage procedures,
the quantities of interest can be calculated using
the following formula:

Pr(Pass)

= Pr(Pass at Stage 1)+Pr(Pass at Stage 2)

=Pr(Init. Rslt. ]0)+Pr(Init. Rslt. B0)

×Pr(Pass�Init. Rslt.B0)

= 1−P+ [P×Pr(Pass�Init. Rslt. B0)],

where P= [dF(k−w)+ (1−d)F(−w)] and was
calculated using standard normal tables.

The conditional probability in the above ex-
pression is obtained directly from the simulation
results.

Using the information obtained from the simu-
lations, we evaluated the effect on the overall
probability of passing of the outlier and median
procedures for different numbers of retests as
compared to a single-stage procedure. For the

Fig. 9. Root mean square for four retests and probability of an analytical mistake=1%. Median, median investigation procedure;
ESD, extreme studentized deviate test using sample S.D.; ESH, extreme studentized deviate test using historical S.D. with 10 dof;
w, true test sample mean; k, size of analytical mistake.
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Fig. 10. Overall probability of passing with a 1% probability of an analytical mistake of size k=6 for two and four retests.
Single-stage procedure involving decisions based solely on initial observed result. Median 2 retests, a procedure allowing second
stage and decision using median after two retests. Median 4 retests, a procedure allowing second stage and decision using median
after four retests.

cases of two or four retests where d=0.01 and
k=6, the results for the median procedure are
shown in Fig. 10. Results for the outlier proce-
dures and for other values of d and k are very
similar, and are not shown. We draw the follow-
ing conclusions:

The outlier procedures and median procedure
performed comparably with respect to the over-
all probability of passing when a two-stage
approach was used.
There is little change in the overall probability
of passing for different numbers of retests.

The addition of a second stage generated the
greatest increase in probability of passing in the
region where it is desirable to do so (w]0). In
the region where such an increase is undesir-
able, it causes little or only moderate increase.
From these observations, we conclude that if a

two-stage procedure is to be used, then the me-
dian is no more likely to produce passing results
than the other forms of averaging studied. In
addition, little change in the probability of pro-
ducing passing results is observed as the number
of retests is increased.

Appendix C. SAS code utilized to generate the simulation results

data simvals ;
medval eshval esdvalkeep n del k w totalit
medpas eshpas esdpas ;

niter=5000 ;
array x (i) x1−x5 ;
/* --- Critical Values for ESD Test and ESD Historical Test ----- */
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array ehcrit (m) h1-h3 ; array edcrit
(m) e1-e3 ;

h1=2.010 ; h2=2.270 ; h3=2.460 ; e1=1.15 ; e2=
1.46 ; e3=1.67 ;

/* -------------------------------------------------------- */

do n=3,4,5 ; m=n-2 ;
do del=.01 ;

do k=2,4,6 ;
do w=-3 to 4 by.5 ;

timesneg=0; to-
talit=0 ;

do until
(timesneg=niter) ;
/* Special Treatment for w \3 to avoid Excessive Iterations */

if w \3 then p=0 ;
else p=uniform(0) ;
/* -------------------------------------------------------- */

x1=w-(p Bdel)*k
+nor-

mal(0); totalit+1 ;
/* --- Start of Loop if Initial Result is Negative -------- */

if x1 B0 then do ;
timesneg+1 ;

sum=x1 ; ssum=x1*x1 ;
min=x1; max=x1 ;
/* -------- Getting and Sorting the Results --------------- */

do i=2 to n ;
p=uniform(0) ;

x=w-(p Bdel)*k
+normal(0) ;

sum+x ; ssum+
x*x ;

if x Bmin then
min=x ; if x \max then
max=x ;

end ;
ml=max ; mh=min ;

do i=1 to n ;
if min BxBmax

then do ;
if x Bml then

ml=x ; if x \mh then mh=
x ;

end ;
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medval
=(ml+mh)/2 ;

if n=5 then do ;
do i=1 to n ; if

mlBxBmh then medval=x ;
end ;

end ;
/* -------------------------------------------------------- */

Mean=sum/n; s=
sqrt((ssum-mean*sum)
/(n-1)) ; r=max-min ;
/* ------ Determining Outliers Using the ESD Test --------- */

crit

=(mean-x1)/s ;
if crit \edcrit

then do ;
esdval

=(n*mean-x1)

/(n-1) ;
end ;
else esdval=

mean ;
/* ------ Determining Outliers Using

the ESD Historical Test ---------
*/

crit2

=(mean-x1)

/(((2*rangam(0,10/2))/10)

**(1/2)) ;
if crit2 \ehcrit

then do ;
eshval

=(n*mean-x1)
/(n-1) ;

end;
else eshval=mean ;

if n=3 then do ;
medpas

=(medval \=0) and
(x2 \0 and x3 \0) ;
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eshpas

=(eshval \=0) and
(x2 \0 and x3 \0) ;

esdpas

=(esdval \=0) and
(x2 \0 and x3 \0) ;

end;

if n=4 then do ;
medpas=(medval \=0) and (x2 \

0 and x3 \0 and x4 \0) ;
eshpas=(eshval \=0) and (x2 \

0 and x3 \0 and x4 \0) ;
esdpas=(esdval \=0) and (x2 \

0 and x3 \0 and x4 \0) ;
end ;
if n=5 then do ;
medpas=(medval \=0) and (x2 \

0 and x3 \0 and x4 \0 and x5 \0) ;
eshpas=(eshval \=0) and (x2 \

0 and x3 \0 and x4 \0 and x5 \0) ;
esdpas=(esdval \=0) and (x2 \

0 and x3 \0 and x4 \0 and x5 \0) ;
end ;
output ; totalit=

0 ;
end ;

/* -------- End of Loop for Initial
Negative Result ------- */

end ; / * End of
itera-
tion
loop */

end ; / * End
of’w’
loop */

end ; / * End
of’k’
loop */

end ; / * End
of’del’
loop */

end ; / * End
of’n’
loop */

proc means data=simvals noprint sum mean std; by n del k w;
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var totalit medval es-
hval es-
dval

medpas
eshpas
esdpas ;

Sum=totliteroutput out=simsum
medmn eshmn esdmnmean=dum1
medpass eshpass esdpass

eshsdmedsd esdsd ;std=dum2
data simsum; set simsum ;

esdmneshmnMedmnkeep n del k w totliter
esdsdMedsd eshsd

eshrmse esdrmseMedrmse
esd-Medpass eshpass

pass ;
medpass=round(100*medpass,.1) ;
medrmse=sqrt((medmn-w)**2+medsd**2) ;
eshpass=round(100*eshpass,.1) ;
eshrmse=sqrt((eshmn-w)**2+eshsd**2) ;
esdpass=round(100*esdpass,.1) ;
esdrmse=sqrt((esdmn-w)**2+esdsd**2) ;
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